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(Paradigms)
® (Supervised learning network)
® (Unsupervised learning network)
® (Associative learning network)
(Topology)
(Sharda, 1994) (Back
propagation BP)
BP
BP
BP Rumelhart et al. (1985)
E (Energy
function)
-1 > (M-Y)
25
i
Tj
Y]
(Gradient descent) AW
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(implementation)
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E
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1l+e™”
e —e” 2
~ —x e_x IOg (HX)
e +e
1 n - . .
4. E==3(T-Y) (Minimum misclassifi-
n
cation error, MME)  Zahorian (1994)
5. n PE n 5" 8™t

n n
delta-bar-delta (DBD) (Jacobs, 1988) DBD (EDBD) (Minia &
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Williams, 1990)

6.
(Generalization) Tang & Kwan (1992)

(Trigger)
(Kwon & Cheng, 1996)

(Petridis & Paraschidis,
1995)
net prune (Sietsma & Dow, 1987) supplementary learning
(Apolloni et a., 1990) stochastic technique (Barnard, 1992) fast BP (Samad,
1988) cascade-correlation learning (Hwang et al., 1996) layer-by-layer optimizing
(Wang & Chen, 1996)

1 3 5 6 7 supplementary learning fast BP
2 4 netprune

stochastic technique layer-by-layer optimizing
cascade-correlation learning
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n BP p m
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AW
sigmoid function f(X) = 1 X f(x)
1+e™
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n [ f'(X) +
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Es (min)
BP
Matlab 4.0
w
( 1995) BP
BP (75  4-input/3-output
)
w
50

° 4-2-3  4-3-3
° n 01 05 08
° Egeance 0.1 0.05 0.01
° Eweance=0.1 0.05 7=0.1 05 300

Eto|erancezo.1 0.05 77 :0.8 150
Eeace=0.01 7=01 05 0.8 1000
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BP
4-2-3 4-3-3
Eul org BP BP
0.1 292/ 0/35 219/44/ 6 284/ 0/24 206/48/ 2
0.1 0.5 151/20/ 0 163/30/ 9 129/12/ 0 132/36/ 4
0.8 137/ 9/31 126/20/30 133/12/26 119/25/21
0.1 X/ 0/50 X/ 0/50 X/ 0/50 X/ 0/50
0.05 0.5 231/18/10 222/29/15 196/13/0 193/36/ 7
0.8 X/ 0/50 143/14/36 149/ 2/48 146/15/35
0.1 X/ 0/50 X/ 0/50 X/ 0/50 X/ 0/50
0.01 0.5 X/ 0/50 555/34/16 903/ 1/45 530/43/ 7
0.8 751/23/ 4 408/25/25 704/13/ 5 401/36/13
alblc
a X
b
C a
219/44/6
7=0.1 Egeae=0.1 50
219 44 BP 6
( 300 )
(Btolerance=0.1  77=0.1)
@ )
n Etolerance
BP )
n Etolerance (
27%
n Etlerance ( ) 43%

Etol erance
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BP
\ (7=0.1) (7=0.5) (7=0.8)
(Etolerance =0.1) 27%
(Etoterance =0.05)
(Etolerance =0-01) 41% 43%
BP (Etol erancezo- Ol)
n n
Em
E Step3 Step 4
E
DBD
DBD
(criteria)
n
n (iteration)
t1l n*tl

m (m<n) t2 (t2 > t1) m*t2
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(m*t2=n*t1)
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Artificial Neural Networks

CHien-Hung WEI *, Yu-CHerng HUNG **

* Department of Transportation and Communication Management Science, National Cheng Kung University

** Department of Electrical Engineering, National Cheng Kung University

ABSTRACT

The performance of artificial neural networks for image recognition, sorting, optimization and generality
during recent years is really impressed. More and more attention and research have been devoted to related
topics. Multilayer neural networks with the back-propagation learning method become the most popular
supervised learning networks. To initiate the learning process, a set of training samples (i.e., the knowledge to
be learned) and arbitrary initial weights should be ready. An iterative procedure is conducted to compute
network output discrepancy and to modify weights accordingly. These steps continue until the error is
relatively small. However, the convergent speed of this conventional method is relative slow. There are some
strategies successful in improving its performance. This article proposes a new approach. The underlying idea
is to find the output nodes with the maximum and minimum error for adaptively modifying learning
coefficients. Behavior of the modified learning rule is simulated and the results are compared with the
conventional backward propagation learning rule. Some improving effects are observed. Finally, other
approaches to further enhancing the learning speed of multilayer neural networks are discussed.

Keywords: artificial neural networks, multilayer, back-propagation learning, supervised learning
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